Greenfield Gas Project, Phase III: Cost-Benefit Analysis Methodology

How to use this template:

This template is divided into a number of worksheets. Each worksheet forms a part of the overall analysis. The analysis comes together in Sheet 5 -Financial Analysis, which can also be used to do a cost-benefit analysis for the data provided. The worksheets are linked such that information can be entered in one place, and changes will be made throughout the analysis. The template is illustrative of the type of information one would need in order to assess possible costs and benefits related to the introduction of natural gas to greenfield communities.

Sheet 2 - Costs

This sheet describes the costs of running any necessary pipeline, including lateral and distribution systems. It can include any and all project costs, such as the construction of metering stations and other pipeline-related structures.
Sheet 2 also shows the amortization of costs over an 8 -year period, covering approximately 30% of the costs in the first year. These percentages can be modified based on the specific case study or situation at hand.

Sheet 3 - Benefits

The Benefits sheet takes the forecast number of users on the system, the forecast price of natural gas, and the comparitive price differences between competing, alternative fuels (usually furnace oil and \#6 fuel oil, but can include electricity, wood, propane, etc).

Each community will have different proposed take-up rates, depending on the competitiveness of alternative fuels, the proportion of each fuel currently in use, and the distribution of energy usage between user classes (e.g. residential, commercial, industrial). The Benefits sheet requires knowledge about current energy usage patterns for user classes and prices of competing fuels. Take up rates and forecast demand by user class can be modified to suit the specific case study area.

The Benefits sheet calculates gross revenues from natural gas sales, as well as describes savings attributable to energyswitching to natural gas. Sheets 2 and 3 work together later, in Sheet 5 - Financial Analysis.

Sheet 4 - Energy Demand

Sheet 4 describes the greenfield area, in terms of user-class and forecast demand for natural gas. This section directly influences the Benefits sheet, by reflecting the take-up rates for each user class, which will in turn affect gross revenues attributable to natural gas sales. Sheet 4 can be modified to reflect quicker, or slower take-up rates.

If the exact number of users is known, the tables can be modified to reflect total number of users. Likewise, if exact energy usage by user class is known, these tables can reflect that information and carry it forward to the benefits sheet.

Sheet 5 - Financial Analysis

Sheet 5 serves as a financial analysis sheet, as well as a cost-benefit analysis sheet, depending on the test variable. As a financial analysis, revenues attributable to the sale of natural gas, less the cost of gas, are compared with the cost of construction and operations \& maintenance costs on a year-by-year basis. Cost-benefit analysis adds in the benefit that consumers enjoy by switching to a lower-cost fuel, offsetting the costs attributable to the pipeline system.

Greenfield Gas Project, Phase III
Cost-Benefit Analysis
Sheet 2 - Costs

Greenfield Gas Project, Phase III
Cost-Benefit Analysis
Sheet 3 - Benefits

Greenfield Gas Project, Phase III
Cost-Benefit Analysis
Sheet 5 - Financial and Economic Analysis

Greenfield Gas Project, Phase III
Cost-Benefit Analysis
Sheet 5 - Financial and Economic Analysis

Greenfield Gas Project, Phase III
Cost-Benefit Analysis
Sheet 7 - Fuel Comparisons

** This worksheet records all the current (or study-based) fuel prices, and allows comparison in the Benefits sheet, based on							
price per unit of heat (MMBtu, in this case).							
Statistics Canada Energy Conversion Factors (2000) (From Energy Statistics Handbook)							
Fuel Type	Unit	terajoules/unit	MMBtu/Unit	BTUs/Unit		MMBtu/litre or kWh	
Propane	megalitre	25.31	24.1047619	24,105	(litre)	0.024105	
light fuel oil	megalitre	38.8	36.95238095	36,952	(litre)	0.036952	
heavy fuel oil	megalitre	42.5	40.47619048	40,476	(litre)	0.040476	
natural gas	gigalitre	37.99	36.18095238	36,181	(litre)	0.036181	
electricity	kwh	3.6	3.78	3,780		0.003780	
Units Used in this Study (Heat Content by Fuel)**		BTU/unit	MMBtu/Unit				
fuel	unit						
Natural Gas	litre	36,181	0.03618095				
Natural Gas	cubic metre	35,300	0.03530000				
Electricity	kWh	3,413	0.00341296				
Light Fuel Oil	litre	36,952	0.03695238				
Heavy Fuel Oil	litre	40,476	0.04047619				
propane	litre	24,105	0.02410476				
wood	cord	25,000,000	25.00000000				
			1				
	For reference use only						
Prices used in this Spreadsheet					Information Citation		
fuel	price	price per MMBtu	Efficiency	Efficiency Adjusted	year	source	
electricity	$8.46 \mathrm{c} / \mathrm{kWh}$	2478.78	0.99	2503.57			
electricity (small industrial)	$4.82 \mathrm{c} / \mathrm{kWh}$	1104.61	0.99	1115.66			
light fuel oil	$60 \mathrm{c} /$ litre	1623.71	0.72	2078.35			
heavy fuel oil	$20 \mathrm{c} /$ litre	494.12	0.79	597.88			
propane	$65.22 \mathrm{c} /$ litre	2705.69	0.76	3355.05			
wood	$12200 \mathrm{c} /$ cord (\$122.00/cord	488	0.45	756.40			

